3,133 research outputs found

    Image scoring in ad-hoc networks : an investigation on realistic settings

    Get PDF
    Encouraging cooperation in distributed Multi-Agent Systems (MAS) remains an open problem. Emergent application domains such as Mobile Ad-hoc Networks (MANETs) are characterised by constraints including sparse connectivity and a lack of direct interaction history. Image scoring, a simple model of reputation proposed by Nowak and Sigmund, exhibits low space and time complexity and promotes cooperation through indirect reciprocity, in which an agent can expect cooperation in the future without repeat interactions with the same partners. The low overheads of image scoring make it a promising technique for ad-hoc networking domains. However, the original investigation of Nowak and Sigmund is limited in that it (i) used a simple idealised setting, (ii) did not consider the effects of incomplete information on the mechanism’s efficacy, and (iii) did not consider the impact of the network topology connecting agents. We address these limitations by investigating more realistic values for the number of interactions agents engage in, and show that incomplete information can cause significant errors in decision making. As the proportion of incorrect decisions rises, the efficacy of image scoring falls and selfishness becomes more dominant. We evaluate image scoring on three different connection topologies: (i) completely connected, which closely approximates Nowak and Sigmund’s original setup, (ii) random, with each pair of nodes connected with a constant probability, and (iii) scale-free, which is known to model a number of real world environments including MANETs

    Supporting cooperation and coordination in open multi-agent systems

    Get PDF
    Cooperation and coordination between agents are fundamental processes for increasing aggregate and individual benefit in open Multi-Agent Systems (MAS). The increased ubiquity, size, and complexity of open MAS in the modern world has prompted significant research interest in the mechanisms that underlie cooperative and coordinated behaviour. In open MAS, in which agents join and leave freely, we can assume the following properties: (i) there are no centralised authorities, (ii) agent authority is uniform, (iii) agents may be heterogeneously owned and designed, and may consequently have con icting intentions and inconsistent capabilities, and (iv) agents are constrained in interactions by a complex connecting network topology. Developing mechanisms to support cooperative and coordinated behaviour that remain effective under these assumptions remains an open research problem. Two of the major mechanisms by which cooperative and coordinated behaviour can be achieved are (i) trust and reputation, and (ii) norms and conventions. Trust and reputation, which support cooperative and coordinated behaviour through notions of reciprocity, are effective in protecting agents from malicious or selfish individuals, but their capabilities can be affected by a lack of information about potential partners and the impact of the underlying network structure. Regarding conventions and norms, there are still a wide variety of open research problems, including: (i) manipulating which convention or norm a population adopts, (ii) how to exploit knowledge of the underlying network structure to improve mechanism efficacy, and (iii) how conventions might be manipulated in the middle and latter stages of their lifecycle, when they have become established and stable. In this thesis, we address these issues and propose a number of techniques and theoretical advancements that help ensure the robustness and efficiency of these mechanisms in the context of open MAS, and demonstrate new techniques for manipulating convention emergence in large, distributed populations. Specfically, we (i) show that gossiping of reputation information can mitigate the detrimental effects of incomplete information on trust and reputation and reduce the impact of network structure, (ii) propose a new model of conventions that accounts for limitations in existing theories, (iii) show how to manipulate convention emergence using small groups of agents inserted by interested parties, (iv) demonstrate how to learn which locations in a network have the greatest capacity to in uence which convention a population adopts, and (v) show how conventions can be manipulated in the middle and latter stages of the convention lifecycle

    Thermodynamic behaviour and structural properties of an aqueous sodium chloride solution upon supercooling

    Full text link
    We present the results of a molecular dynamics simulation study of thermodynamic and structural properties upon supercooling of a low concentration sodium chloride solution in TIP4P water and the comparison with the corresponding bulk quantities. We study the isotherms and the isochores for both the aqueous solution and bulk water. The comparison of the phase diagrams shows that thermodynamic properties of the solution are not merely shifted with respect to the bulk. Moreover, from the analysis of the thermodynamic curves, both the spinodal line and the temperatures of maximum density curve can be calculated. The spinodal line appears not to be influenced by the presence of ions at the chosen concentration, while the temperatures of maximum density curve displays both a mild shift in temperature and a shape modification with respect to bulk. Signatures of the presence of a liquid-liquid critical point are found in the aqueous solution. By analysing the water-ion radial distribution functions of the aqueous solution we observe that upon changing density, structural modifications appear close to the spinodal. For low temperatures additional modifications appear also for densities close to that corresponding to a low density configurational energy minimum.Comment: 10 pages, 13 figures, 2 tables. To be published in J. Chem. Phy

    Isoperimetric Inequalities for Minimal Submanifolds in Riemannian Manifolds: A Counterexample in Higher Codimension

    Full text link
    For compact Riemannian manifolds with convex boundary, B.White proved the following alternative: Either there is an isoperimetric inequality for minimal hypersurfaces or there exists a closed minimal hypersurface, possibly with a small singular set. There is the natural question if a similar result is true for submanifolds of higher codimension. Specifically, B.White asked if the non-existence of an isoperimetric inequality for k-varifolds implies the existence of a nonzero, stationary, integral k-varifold. We present examples showing that this is not true in codimension greater than two. The key step is the construction of a Riemannian metric on the closed four-dimensional ball B with the following properties: (1) B has strictly convex boundary. (2) There exists a complete nonconstant geodesic. (3) There does not exist a closed geodesic in B.Comment: 11 pages, We changed the title and added a section that exhibits the relation between our example and the question posed by Brian White concerning isoperimetric inequalities for minimal submanifold

    Molecular architecture of softwood revealed by solid-state NMR

    Get PDF
    Economically important softwood from conifers is mainly composed of the polysaccharides cellulose, galactoglucomannan and xylan, and the phenolic polymer, lignin. The interactions between these polymers lead to wood mechanical strength and must be overcome in biorefining. Here, we use 13C multidimensional solid-state NMR to analyse the polymer interactions in never-dried cell walls of the softwood, spruce. In contrast to some earlier softwood cell wall models, most of the xylan binds to cellulose in the two-fold screw conformation. Moreover, galactoglucomannan alters its conformation by intimately binding to the surface of cellulose microfibrils in a semi-crystalline fashion. Some galactoglucomannan and xylan bind to the same cellulose microfibrils, and lignin is associated with both of these cellulose-bound polysaccharides. We propose a model of softwood molecular architecture which explains the origin of the different cellulose environments observed in the NMR experiments. Our model will assist strategies for improving wood usage in a sustainable bioeconomy

    Global surfaces of section in the planar restricted 3-body problem

    Get PDF
    The restricted planar three-body problem has a rich history, yet many unanswered questions still remain. In the present paper we prove the existence of a global surface of section near the smaller body in a new range of energies and mass ratios for which the Hill's region still has three connected components. The approach relies on recent global methods in symplectic geometry and contrasts sharply with the perturbative methods used until now.Comment: 11 pages, 1 figur

    Relationships between the El-Niño Southern Oscillation and spate flows in southern Africa and Australia

    No full text
    International audienceThe flow records of arid zone rivers are characterised by a high degree of seasonal variability, being dominated by long periods of very low or zero flow. Discrete flow events in these rivers are influenced by aseasonal factors such as global climate forcings. The atmospheric circulations of the El-Niño Southern Oscillation (ENSO) have been shown to influence climate regimes across many parts of the world. Strong teleconnections between changing ENSO regimes and discharges are likely to be observed in highly variable arid zones. In this paper, the influence of ENSO mechanisms on the flow records of two arid zone rivers in each of Australia and Southern Africa are identified. ENSO signals, together with multi-decadal variability in their impact as identified through seasonal values of the Interdecadal Pacific Oscillation (IPO) index, are shown to influence both the rate of occurrence and the size of discrete flow episodes in these rivers. Keywords: arid zones, streamflow, spates, climate variability, ENSO, Interdecadal Pacific Oscillation, IP

    Previously Associated Type 2 Diabetes Variants May Interact With Physical Activity to Modify the Risk of Impaired Glucose Regulation and Type 2 Diabetes: A Study of 16,003 Swedish Adults

    Get PDF
    OBJECTIVE-Recent advances in type 2 diabetes genetics have culminated in the discovery and confirmation of multiple risk variants. Two important, and largely unanswered questions are whether this information can be used to identify individuals most susceptible to the adverse consequences of sedentary behavior and to predict their response to lifestyle intervention; such evidence Would be mechanistically informative and provide a rationale for targeting genetically susceptible subgroups of the population. RESEARCH DESIGN AND METHODS-Gene X physical activity interactions were assessed for 17 polymorphisms ill a prospective population-based cohort of initially nondiabetic middle-aged adults. Outcomes were 1) impaired glucose regulation (IGR) versus normal glucose regulation determined with either fasting or 2-h plasma glucose concentrations (n = 16,003), 2) glucose intolerance (in mmol/l, n = 8,860), or 3) incident, type 2 diabetes (n = 2,063 events). RESULTS-Tests of gene X physical activity interactions oil IGR risk for 3 of the 17 polymorphisms were nominally statistically significant: CDKNT2A/B rs10811661 (P-interaction = 0.015), HNF1B rs4430796 (P-interaction = 0.026), and PPARG rs1801282 (P-interaction = 0.04). Consistent interactions were observed for the CDKN2A/B (P-interaction = 0.013) and HNF1B (P-interaction = 0.0009) variants on 2-h glucose concentrations. Where type 2 diabetes was the outcome, only one statistically significant interaction effect was observed, and this was for the HNF1B rs4430796 variant, (P-interaction = 0.0004). The interaction effects for HNF1B on IGR risk and incident diabetes remained significant after correction for multiple testing (P-interaction = 0.015 and 0.0068, respectively). CONCLUSIONS-Our observations suggest that the genetic predisposition to hyperglycemia is partially dependent on a person's lifestyle. Diabetes 58:1411-1418, 200

    Distinguishing Social from Nonsocial Navigation in Moving Animal Groups

    Get PDF
    Many animals, such as migrating shoals of fish, navigate in groups. Knowing the mechanisms involved in animal navigation is important when it comes to explaining navigation accuracy, dispersal patterns, population and evolutionary dynamics, and consequently, the design of conservation strategies. When navigating toward a common target, animals could interact socially by sharing available information directly or indirectly, or each individual could navigate by itself and aggregations may not disperse because all animals are moving toward the same target. Here we present an analysis technique that uses individual movement trajectories to determine the extent to which individuals in navigating groups interact socially, given knowledge of their target. The basic idea of our approach is that the movement directions of individuals arise from a combination of responses to the environment and to other individuals. We estimate the relative importance of these responses, distinguishing between social and nonsocial interactions. We develop and test our method, using simulated groups, and we demonstrate its applicability to empirical data in a case study on groups of guppies moving toward shelter in a tank. Our approach is generic and can be extended to different scenarios of animal group movement. © 2012 by The University of Chicago
    corecore